GIAN PAOLO CIMELLARO

Scarica il contatto come vcard Foto

Professore Ordinario (L.240)

Membro Centro Interdipartimentale (SISCON - Safety of Infrastructures and Constructions)

+39 0110904801 / 4801 (DISEG)

Pagina web personale

Ambiti di ricerca Resilienza dei sistemi infrastrutturali e delle comunità urbane
Laboratori Laboratorio Numerico Sperimentale di Ingegneria Sismica e Resilienza
Progetti di ricerca

Finanziati da bandi competitivi

  • Metodo per lo sviluppo di mappe di funzionalita` post catastrofi su scala urbana, (2021-2021) - Responsabile Scientifico

    Ricerca da Enti privati e Fondazioni

    ERC sectors

    PE8_3 - Civil engineering, architecture, maritime/hydraulic engineering, geotechnics, waste treatment

    SDG

    Obiettivo 9. Costruire un'infrastruttura resiliente e promuovere l'innovazione ed una industrializzazione equa, responsabile e sostenibile

    Abstract

    La tecnologia proposta riguarda l’implementazione di metodi e programmi informatici atti allagenerazione della mappa di funzionalità del patrimonio edilizio e delle infrastrutture urbane aseguito di un evento catastrofico. Tale tecnologia mira ad aumentare la conoscenza dei sistemi fisiciurbani e delle loro interazioni, a rendere le singole infrastrutture più sicure e ad implementare azionispecifiche che consentano a ciascuna rete infrastrutturale di mitigare gli effetti derivanti da eventinaturali estremi. La tecnologia proposta fornisce sia un valido strumento per la conoscenza dellavulnerabilità del costruito urbano che un’efficace mezzo per la gestione delle emergenze postdisastro.Tale tecnologia può essere altresì impiegata per supportare le pubbliche amministrazioninella gestione delle risorse destinate alla mitigazione del rischio derivante da eventi naturaliestremi.

    Strutture interne coinvolte

  • IDEAL DRONE - Use of drones for Emergency management, (2020-2022) - Responsabile Scientifico

    Ricerca UE - H2020 - Excellent Science - ERC

    Vedi la scheda del progetto su CORDIS

    Abstract

    Firefighters fatalities are increasing worldwide because they are the first entering in damaged buildings or in fire, without knowing the location of victims and the source of danger. The Principal Investigator has invented a system for indoor tracking that is able to detect victims inside buildings after a disaster (earthquake, fire, etc.) using a radio frequency system (UWB) based on fixed nodes (anchors) in the building to detect the location of wearable nodes (tags). The application has been patented (PCT application: n. 102016000109493). The idea of the project IDEAL DRONE is to install the anchors on an unmanned aerial vehicles (UAVs) swarm that is flying around the building. The UAVs will be equipped with a customized sensor network so the system will provide indoor localization for managing emergencies without the need to install a structural health monitoring system (SHM) inside the building. Then the health condition and the location of the victims can be plotted in a map, so that rescue operations can be optimized. The goal of the project is to develop the first prototype of the system using a developing board for rapid prototyping and perform an initial market analysis of the system to analyze the impact of this product in the market. After the first prototype the next step will be to redesign all the electrical parts to find the optimal solution between quality and price for each submodule and component of the system.

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

  • Integrated Smart Device for Emergency management, (2017-2018) - Responsabile Scientifico

    Ricerca UE - H2020 - Excellent Science - ERC

    Abstract

    The project IDEAL SENSOR is developing a wearable wrist band device and a customized structural healthmonitoring (SHM) system for managing emergencies. The proposed system provides a comprehensive solutionfor indoor localization, healthcare monitoring, and other general purpose services (fitness, entertainment, health,etc.). Moreover, an infrastructure based on the structural health monitoring will be developed which include all thefunctionality of standard Structural Health Monitoring (SHM) systems (environmental monitoring, health assessment,etc.), but it performs also indoor localization. In detail, the system is composed of different environmental monitoringsensors (humidity and temperature), body signal monitoring (heart rate, body temperature, humidity, location andimages), communication modules (radio frequency (RF) transceiver, GPRS/GSM, GPS and Bluetooth low energy),OLED display. Currently , the prototype has been developed and tested in a STM Nucleo-F401 board which is adeveloping board provided by STMicroelectronics commonly used for rapid prototyping. In order to commercializethe prototype and make it a feasible product, the current developed system should be redesigned and customized basedon our needs and requirements. The electrical parts will be redesigned completely and the best available solutions(price and quality) for each sub-module and components will be used. Moreover, by miniaturizing the prototype anddesigning a user friendly package and software, it will get the shape of a real smart watch with more features withrespect to the current ones.

    Paesi coinvolti

    • BELGIO
    • ITALIA

    Enti/Aziende coinvolti

    • COMMISSIONE EUROPEA

    Strutture interne coinvolte

  • Integrated DEsign and control of Sustainable CommUnities during Emergencies, (2015-2020) - Responsabile Scientifico

    Ricerca UE - H2020 - Excellent Science - ERC

    Vedi la scheda del progetto su CORDIS

    Abstract

    Integrated DEsign and control of Sustainable CommUnities during Emergencies

    Paesi coinvolti

    • BELGIO
    • ITALIA

    Strutture interne coinvolte

  • IRUSAT - IMPROVING RESILIENCE OF URBAN SOCIETIES THROUGH ADVANCED TECHNOLOGIES, (2014-2015) - Responsabile Scientifico

    Ricerca UE

    Vedi la scheda del progetto su CORDIS

    Abstract

    Urban societies depend heavily on the proper functioning of infrastructure systems such as electric power, gas, potable water, and transportation networks. Normally invisible, this reliance becomes painfully evident when infrastructure systems fail during disasters. Moreover, because of the network properties of infrastructures, damage in one location can disrupt service in an extensive geographic area. The societal disruption caused by infrastructure failures is therefore disproportionately high in relation to actual physical damage. As a result of the project, new retrofitting strategies will be developed to improve the resilience of infrastructures to withstand natural hazards. The project aims to improve the resiliency of buildings, bridges, and communities in general through new advanced technologies such as base isolations, viscous dampers, etc. Base isolation systems that are able to control the shape of the floor response spectrum will be analyzed, in particular their behavior under vertical excitations. Attention will be given to infrastructural systems’ components and then it will be extended to performance of component assemblages (e.g., bridges, pipeline networks, etc.). The project will range from field work of specific lifeline damage in New Zealand, Japan and Italy after the earthquakes to laboratory simulations done in the laboratory of the University of California at Berkeley with scaled models and numerical analyses. Complexities of infrastructures, which include societal as well as technical issues will be addressed in the project. The project will try to answer through an interdisciplinary approach to the following questions: How, for instance, will the failure of one bridge affect businesses throughout the urban area that rely on the transportation system? How will the failure of one infrastructure system disrupt other infrastructure systems? How can repairs following a disaster be planned so they minimize social and economic losses?

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

  • ICRED - INTEGRATED EUROPEAN DISASTER COMMUNITY RESILIENCE, (2010-2014) - Responsabile Scientifico

    Ricerca UE - VII PQ - People

    Vedi la scheda del progetto su CORDIS

    Abstract

    Recent events have shown how systems (regions, communities, structures etc.) are vulnerable to natural disasters of every type like human errors, systems failures, pandemic diseases and malevolent acts, including those involving cyber systems and weapon of mass destruction (chemical, biological, radiological ). In order to reduce the losses in these systems the emphasis has shifted to mitigations and preventive actions to be taken before the extreme event happens. Mitigation actions can reduce the vulnerability of a system; however, also if there is insufficient mitigation, or the event exceeds expectations, recovery is necessary to have a resilient function to the community. The objective of this proposal is to establish a framework for defining and measuring disaster resilience at the community scale. The framework will build on and expand previous research at MCEER linking the four resilience properties (robustness, redundancy, resourcefulness, and rapidity) and resilience dimensions (technical, organizational, societal, and economic) so as to measure the disaster resilience of capital assets (e.g., hospitals) and asset classes (e.g., health care facilities). Once developed, the framework will provide the basis for development of quantitative and qualitative models that measure the disaster resilience of communities. Over the longer term, these models will enable the development of decision-support software tools that help planners and other key decision makers and stakeholders to enhance the disaster resilience of their communities.

    Paesi coinvolti

    • ITALIA

    Strutture interne coinvolte

    • Dipartimento di Ingegneria Strutturale e Geotecnica
  • Vedi altro

Finanziati da contratti commerciali

  • Implementazione delle logiche di sistema ed integrazione con test di laboratorio per sensori elettronici di monitoraggio strutturale, (2021-2022) - Responsabile Scientifico

    Ricerca Commerciale

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • EFFEGI ELETTRONICA S.R.L.

    Strutture interne coinvolte

  • Analisi e ricerca sperimentale sull’interazione tra i sensori integrati nei materiali compositi, gli adesivi utilizzati per la loro applicazione ed i materiali da costruzione oggetto di monitoraggio, (2021-2022) - Responsabile Scientifico

    Ricerca Commerciale

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • CARBONTEAM S.R.L.

    Strutture interne coinvolte

  • Progettazione e sviluppo di codici di calcolo e piattaforma SW multifunzione per analisi modale automatica di strutture e interpretazione dei dati mediante algoritmi di apprendimento automatico (machine learding), (2021-2023) - Responsabile Scientifico

    Ricerca Commerciale

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • GD TEST S.r.l.

    Strutture interne coinvolte

  • Implementazione dei modelli BIM per l'analisi strutturale, verifica del rischio sismico e valutazione dell'indice di vulnerabilità di tre edifici del patrimonio pubblico del Comune di Melzo., (2019-2020) - Responsabile Scientifico

    Ricerca Commerciale

    Paesi coinvolti

    • ITALIA

    Enti/Aziende coinvolti

    • COMUNE DI MELZO

    Strutture interne coinvolte

  • ECRIS - EUROPEAN COMUNITIES RESILIENT INTEGRATED THROUGH SMARTPHONE, (2012-2014) - Responsabile Scientifico

    Ricerca Commerciale

    Paesi coinvolti

    • ISRAELE
    • ITALIA

    Enti/Aziende coinvolti

    • BMOOBLE S.R.L.
    • ATLASCT -ATLAS CARTOGRAPHIC TECHNOLOGIES
    • TECHNION ISRAEL INSTITUTE OF TECHNOLOGY

    Strutture interne coinvolte

    • Dipartimento di Ingegneria Strutturale e Geotecnica